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Problems of optimal control with incomplete information are of considerable .interest in 
connection with practical control problems. In the present paper we investigate the prob- 

lem of optimizing the process of tracking an object in the case of incomplete and inex- 
act data on its position. The errors in the measured data are due to: (1) information 
lag, (2) the presence of random disturbances in the measuring instruments. Certain 
assumptions enable us to educe the problem of determining the optimal tracking law 

to an ordinary optimal ccntrol problem. The optimal tracking law is obtained in expli- 

cit form for certain quality criteria. 

1, Let the motion of the object under investigation be described by the system of 

differential equations 
z’ (t) = A (t)s (t) + f (t) (1.1) 

and let the tracking system have available to it the vector y (t) given by 

where the Z-dimensional vectors x (t) and y (t) belong the the Euclidean space Et. 
Unless otherwise indicated, the vectors from Er occurring below are to be understood 

as column vectors; The ]:th coordinate of a vector will be denoted by the same letter 

as the vector with the subscript i. For example, the vector 5 (t) = (x1 (t), . . . . x1 (t))‘; 
here and below primes indicate transposition. 

We assume that the following restrictions on the coefficients of Eqs. (1. l), (1.2) are 
fulfilled throughout: the ( ,? x 1 )-dimensional matrices A (t), Q (t) , (r ft) and the 

vector f (t) E El ; the elements of f (t) and A (t) are continuous, and the elements 

of o (t> and Q (t) are Borel-measurable and bounded; the constant h 2 0 ; finally, 

g (t) which is a Wiener random process, assumes values from .EI and has independent 
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components normalized by the conditions E (0) = 0, M%i (t) = 0, M%ia (t) = t, 
i = 1, . . . . I (the letter il! denotes the mathematical expectation) ; the matrix B (t> = 
= (3 (t)o’ (t) isnondegenerate.Here Eq. (1.2) is to be undestood as an Ito stochastic 
differential equation. 

The tracking y (t) is conducted during the interval 0 ,( t < T,and the initial dis- 
tribution of the vector z (0) is given. The distribution is normal with a known mathe- 
matical expectation m, E El and a nondegenerate correlation martix D, ; it does not 

depend on the distributions of the process E (t). This and the properties of-the coeffici- 
ents of Eqs. (1.1) and (1.2) imply that the conditional distribution z (t) is also normal 

under the condition y (s), 0 ,( s 4 t . 

The possibility of varying the matrix Q tt) (which defines the content of the mea- 
surements) and the matrix B (t) (which defines the accuracy of the measurements) 

during tracking gives rise to various problems of optimal selection of’these matrices. 

Some of these problems are considered below. 
We note that closely related questions in the case h = 0 are considered in [l-3], 

where the choice of the matrices Q (i) and B (t) which are in some sense optimal, is 

solved with the aid of the Pontriagin maximum principle. In [l] the maximum principle 
is used to reduce the problem to a system of transcendental equations. 

The maximum principle can also be used to solve the problems considered in the pre- 

sent paper. However, since the random quantity t (0) is Gaussian, and since Eqs. Cl. 1). 
(1.2) are linear, the initial problem on the choice of the matrices B (t) and Q’(i) can 
also be reduced to the associated problem of moments; another way of dealing with the 

problem is by the classical methods of the calculus of variations. The latter methods 

make it possible to find the optimal tracking mode in explicit form in certain situations. 

a. We say that there is no tracking at the instant s E [O, 2’1 if for this s all the 
elements of the matrix Q (s) are equal to zero. By m (t) and .D (t) we denote, respect- 
ively, the conditional mathematical expectation and conditional dispersion matrix of 

the process z (t) in the presence of observations y (t), and the unconditional mathema- 

tical expectation and unconditional dispersion matrix in the absence of observations. 
Here m (t) constitutes the best (in the mean-square sense) estimate (filter) of the quan- 

tity 5 (r) constructed on the basis of the measured realization of the process y (s), 

0 sg s < t, and D (t) (by virtue of the assumptions of Sect. 1) coincides with the 
unconditional dispersion of the difference x (t) - m (t). 

Let us introduce the fundamental matrix z (t, s) of system (1.1) by means of the 
relations 

a2 (t, s)/& = A (t)z (t, s), E (s, s) = I (2.1) 

where 1 is an identity matrix. Before stating the optimal problems under investigation 

exactly; we propose to show that the function m (t) is a solution of the system of sto- 

chastic differential equations 

dm(t) = D(t)z’(t-_z,t)Q’(t)B-l(t)[dy(t) - Q(t)z(t - h, t)m(t)dt+ 

+? wtp - 12, s) f (4 ds W + (4 (2) m (t> + f (t))dt, m (0) = m. (2.2) 

and that the matrix D (t) is defined by the equations 
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D’ (t> = - D (t)z’ (t - h, t)Q’ (t)B-l (t)Q (th (t - h, t)D (t) + 

+ A (W (t) + D W’ (t), D (0) = D, (2.3) 

which constitute a system of ordinary differential equations. 

Formulas (2.2) and (2.3) for h = 0. were obtained in well-known paper [4]. 

Theorem 2.1. Let the assumptions of Sect. 1 hold. Then the functions ??z (t) and 

D (t) satisfy Eqs. (2.Q (2.3). 
Proof. By virtue of formula (1.1) the function Cp (t) = 5 (t - I:) is a solution of the 

equation cp’ it) := A (t - h) ‘p (t) + f (t - h) ( I 2.4’ 

with the initial condition -11 

cp (0) = z (-II, 0) r (0) + \ I (- 11, s) j (s) ds (2.5) 

il 

Let us denote by m_ (t) the best mean-square estimate of 9 (1) based on the tracking 
data y (s), 0 < s < t and let D_ (t) denote the dispersion of the difference z (t) - m_ (t). 

By virtue of (2.4), (2.5) and the results of [4], the function m_ (t) satisfies the follow- 

ing equations : 

dm- (d = D- (W' (4 B-l (G (&I (d - Q (t) m_ (t)dt) + (A (t - h) m_ (Q + 
T : \* ’ - h)) dt, m- (0) = IMQ CO) 12.r,) 

and the matrix D_ (t) is the solution of the system of ordinary differential equations 

D’_ (t) = A (t - h) D_ (1) + D_ (t)A’ (1 - It) - D_ (t) Q’ (t) B-l (t) Q (t)D_ (t) (2.5) 

defined by the initial conditions 

D_ (0) = M (cp (0) - nt_ (0)) 2 (2.8) 

Equation (1.1) is determinate, so that 

D (t) = z (t, t - h) D_ (t) z’ (t, t - h) (2.9) 

With allowance for (2.1) and the associated equation for the fundamental matrix ,z(L S) , 
namely 

az (t, s)/ds = - z (t, s) A (s), z (s, s) = I 

we find that the total derivative z’ (t, t - h) is 

z’(t,t -h) = A (I)z(f,t -IL) - z (t, t - h) A (t - IL) (2.10) 

But by virtue of (2.9) we have 

D’ (t) = z’ (t, ti- h) D_ (t) z’ (t, t - h) + z (t, t - h) D_’ (t) z’ (t, t - h) + 
-j- z (t, t - h) D_ (t)z” (t, t - h) (2.11) 

Let us transform expression (2.11) with the aid of formulas (2.7), (2.9). First of all, 
we infer from (2.9). (2.10) that 

z’ (t, t - h) D_(t) z’ (t, t - h) = A (t) D (t) - 
- z (t,t--h)A(t- h) D_ (t) z’ (t, t - h) (2.12) 

and similarly that 
z (t, t - h) D_ (t) z” (1, t - h) = D (t) A’ (t) - 

- z (k t - h) D_ (t) A’ (t - h) z’ (t, t - h) (2.13) 

Since 
z (t, tr) z (t;, s) = z (t, s) (2.14) 
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it follows by (2.7) that 

2 (t, t - h) D_’ (8) a’ (t, t - Ia) = 2 (t, f - h) IA (f - h) D, (f) f D, (f) ‘4’ (f - 

- h)] z’ (f, t -h) - D (f) z’ (f - ia, t)Q‘ (f) B-l (f) Q (f) z (f - la, f) D (t) (2.15) 

Thus, making use of formulas (2.8), (2.9) and substituting (2.12). (2.13), (2.15) into 
(2.11). we see that relations (2.3) are indeed valid. 

To prove Eq. (2.2) we note that by virtue of (1.1) 

m (f) = 2 (f, t - h) m_ (f) -f- z (f, s) f t.7) 0% (2.16) 

Let us compute the stochastic differential of the function m (t). From (2. l), (2.6), (2.10) 
and (2.16) we infer that t 

dm(f) = A (f) 2 (f, t - h) m_ (t) df + .4 (f) f 2 (f, s) f.(s) (3s df -t- 

fl-h 

+ z (f, f - h) D_ (t) Q’ (t) B-’ (t) [& (ft - Q ft) m_ (t) dtf 4 .f (1) df (7.17) 

Let us transform the individual terms in the right side of (2.17). By virtue of (2.16) we 
have 

A (t) J (t, t -h) m_ (f) = A (f) m (1) - A ff) 5 2 (f, 5) f (4 & (2.18) 

t--k 

Further, by virtue of (2.9). (2.14) we have 

2 (t, t - h) D_ (f)Q’ (f)W (f) = D (f) z’ (f - R, t) Q' (t) B-’ (t) 

Moreover, recalling (2.9X (2. X4), (2.16) we find that 

(2.19) 

Q W m_ @I = Q 0) 2 @ - h, t) m (f)- Q (t) i z (t-b 4 f (3) $8 (2.20) 

t--h 

Hence, the substitution of (2.18)-(2.20) into (2.17) proves Eqs, (2.2). Theorem 2.1 has 
been proved. 

Let us denote by V (r) the nonnegative-definite symmetric matrix 

f’ (t) = z1 (t - h, ~)~‘(~)~-l (t)Q (t)z (t - h, t) (2.21) 

and rewrite Eq, (2.3). which constitutes a Bernoulli matrix equation, in the form 

D:(t) I- A (t)D (t) + D (t)A’ (t) - D (t)V (t)D (t), D(h) = Do (2~~~) 

It is easy to show that if the requirements of Sect. 1 are fulfilled, then for any nonnega- 
tive-definite matrix V (t) there exist a matrix 0 (t) and a sieve-definite matrix 
B (t) which satisfy Eq. (2.21). Repeating the arguments of [!Yj (p. 420), we find that the 
determinant det D (t) of the matrix D (t) satisfies the Jacobi identity 

detD(t) = detDOexp{rSp[A(s)-V(s)D(s)f A’(s)1 dsl 
0 

(here SpA (t) is the trace of the matrix A (t)), whence it follows that the matrix 
13 (li) is nonsingular for all values of the argument t . Hence, there exists a matrix 

a @) = I)-l (r) defined by the following conditions by virtue of (2.22): 

Q’ (t) = - A’ @)a (t) - a (t)A (0 + V W, CL (0) = a@ = Do-” (2.23) 

Occasionally, in order to emphasize the dependence of the solution tt (t) of Eq, (2.23) 
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on the initial conditions and on the function V (t) , we denote it by the symbol 

a (%, v, t). 

3. Problem 1. Suppose that we are given the positive-definite matrices a,, = 

= Do-, aT = Dr-l such that the matrix 

R=aT- [z’ (T, O)l-laoz (T, 0)-l 

is nonnegative-definite. We are to find a nonnegative-definite matrix V, (t) which for 
each i = 1, . . . . I minimizes the expression 

[ i (1” tTf s)l-’ VO (S))ij2dS 

(here and below (A)ij denotes the ijth element of the matrix A) for which 01 (ccO, 

VI), T) = ar. 
If v (t) G 0, then by virtue of (2.22), (2.23) the function 

z (Z’, O)at,-rz’(T, 0) = z (T, 0) D,z’(T, 0) 

is the dispersion matrix of the unknown vector x (t) at the instant t = T in the absence 

of observations. As a result of measurements, probabilistic judgements about the quantity 

.z (T) must undergo refinement in some sense, and this is reflected in the requirement 
of nonnegative definiteness of the matrix R ; this requirement implies, in particular, 

that the conditional dispersion of the quantities zi( T) during tracking is not larger than 

in the absence of observations. The validity of the latter statement follows from the 
nonnegative definiteness of the matrix 

2 (T, O)U~-~~’ (T, O)Rcw-’ = z (T, O)D,L.’ (T, 0) - DT 

Theorem 3.1. Let the coefficients of Eq. (1.1) satisfy the requirements of Sect. 

1. Then the function 

where 
V (t) = z’ (T, t)RG-‘z’ (T, t)-‘, O<t<T 

G = 1 z’ (T, s)-l z (T, s)-l ds 

yields the solution of Problem 1. 

Proof. The solution of Eq.(2.23) can be written as (see [l], p. 100) 

a (t) = z’ (t, O)-*a@ (t, 0)-l + 1 z’ (t, s)-‘V (s) z (t, s)-l ds 
0 

Setting t = T in this equation, we find that if Problem 1 had a solution, the following 
formula would be valid : T 

R= 
s 

o (s) z (T, s)-1 ds (3.1) 
0 

where the matrix o (s) = z' (T, s)-I V (s). Hence, to solve Problem 1 we need merely 
find a matrix 0 (4 which for every i = 1, . . . , I minimizes the expression 

T 1 

(a (~))~~%ds (3.2) 

0 j=l 
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and satisfies Eq. (3.1). Now let us expand the class of matrices o among which we seek 
the solution of Problem 1 to the set of matrices with square-integrable elements. Since 

by (3.1) we have 

(R)ij = i i (0 (~))ik (2 (TV S)-‘)rj dS (3.3) 
o k=l 

it follows that the ancillary optimal problem can be stated as follows: we are to find 1 
row vectors having square-integrable elements (0 (s))ik (the integer i, 1 < i < 2 , is 
the number of the vector; the number k runs through the values from 1 to 1 for each 

i ) which minimize relations (3.2) and satisfy relations (3.3). 
Let i, 1 < i < I, be an arbitrary fixed number. Let us consider Eqs. (3.3) for this 

value of i. We denote by /3 the row vector with the coordinates 

Pj = (R)ij, Idi\< (3.4) 

and by ‘pO’ (s) the function equal to the ith row vector which yields the solution of the 
ancillary problem. Computing the function 'PO (s) by the method of definite Lagrange 

multipliers (for example, see p], Sect. 18). we find with allowance for (3.2) and (3.4) 
that ‘PO’ (s) = bG-12 (T, s)-1 (3.5) 

We recall that formula (3.5) was derived for an arbitrary but fixed value of the index 
i. Hence, since i is arbitrary, we finally infer from (3.5) that the solution .w {s) of the 
ancillary optimal problem is given by the formula 

o (s) - RG-1 z’ (T, s)-1, Ofs<T 

This and the nonnegative definiteness of the matrix 

1’ (t) = z’ (T, s) RC-’ z (T, s) [QT, s)-l z’ (T, s)-i] 

imply that the matrix ‘1’ (t) is the solution of Problem 1. Theorem 3.1 has been proved. 

Example 3.1. Let the unknown two-dimensional vector z,,have an a priory 

Gaussian distribution with the parameters m o, Do, and let the observer have available 

to him the quantity t 

Y (9 = c Q (~1 d=o + 5 (t), 
6 

0 < t < T 

where E (1) is a two-dimensional Wiener process. We are to choose Q (t) in such a 
way that the dispersion of the difference between the unknown vector z. and the esti- 
mate m (t) of this vector based on the tracking data is equal for t = T to a given 
matrix D, such that Do - D, is nonnegative-definite. Setting 

T 

2’ (t) = 0, 2 (0) = zo, Y (t)= 
c 

Q b) 5 (4 ds + 4 0) 

6 

for 0 < t Q T and applying Theorem 3.1 (in whose conditions A (t) is a zero matrix, 
z (T, t) is equal to the identity matrix I, G = 1 T and R = D,-1 - De’-‘) , we find that 

the matrix Q (t) is constant and with allowance for formula (2.21) satisfies the equation 
Q’Q = R T-l, the existence of whose solution follows from the nonnegative definiteness 
of the matrix R. 

4. Pontriagin’s maximum principle p] enables us to consider other variants of the 
optimal tracking problem and to reduce their solution to a system of transcendental 
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equations. Since the exact statement of other optimal tracking problems and their 
reduction to a system of transcendental equations for h > 0 is in no way different from 
the statement of the problem for h = 0 studied in Cl], we shall merely illustrate the 
foregoing results by means of examples. 

Example 4.1. Suppose we are given a one-dimensional equation of the form 
(1.1) with a constant coefficient a, 

3’ (t) = az (t) + f (t) (4.1) 

under the initial condition z (0)= zo. The random quantity z (0) is Gaussian with a 

known dispersion Do > 0. The quantity 

c b (s) z (s - h) ds + aE (t) 
*, 
0 

is observed in the interval [0, 2’1 . Here the constant o # 0 and f (n is a Wiener pro- 
cess which does not depend on z (0). By suitable choice of the function b (t) which is 
piecewise-continuous from the left, is equal either to zero or to a constant b # 0 for 
any t , and satisfies the condition 

T 

s 
b (s) da-c- bT,, To < T (4.2). 

0 

we are required to minimize the expression 
T 

J = PI D (T) + P 1 D (s) ds 
0 

where the nonnegative constants p and fir are such that f3+ PI > 0. Requirement (4.2) 
means, by virtue of the definition of the function b (t), that the sum duration of the 

tracking process is given. 

This example was previously studied in [l] for h = 0, fi = 0, fll = 1 . 
Equation (2.23) with allowance for (2.21) becomes 

a’ (t) = - 2aa (t) + V (t), 0 <t<T 
a (0) = DO-‘, v (t) = cab (t) exp (-2ah) 

Making use of the maximum principle([7], pp. 75-79), we can readily show that 

b, (t) = b if $(t)+C>O (4.3) 

b, (t) = 0 if $ (t) + c < 0 

where the constant c is chosen in such a way as to satisfy requirement (4.2). and where 
the associated variable 11, (t) is defined by the relations 

3’ (t) = 2aJ) (t) - flu-2 (f), O<t=GT 

11, (T) = 81%’ (T) (4.4), 

These equations imply that the function II, (t) decreases monotonically for u < 0 . 
Hence, for a < 0 we have 

b, (t) = b if O<t<T-To 
b, (t) = 0 if T-TT,<t<T 

The optimal tracking law is of the same form for u = 0, b > 0. Similarly, for a > 0, 

/3 = 0 we have (by virtue of (4.4)) 
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b, (t) = 0, 0 f t < To - T; b. (t) = 5, To - 2’ < t < T 

If (1 = 0, B = 0, then.the value of the functional J does not depend on the tracking law. 
Finally, let us show that if a > 0, fJ > 0 , then there exists just one tracking interval, 
i.e. that there exists an instant ti < T - T, such that b, (t) = b for 

t E (tr, t, + T,-J and b, (t) = 0 for t G (tit ti -i- To] 

To prove this by reduction ad absurdum, we assume that there exist several nonadjacent 

intervals (tl, sil where the function ‘b, (t) defined by formulas (4.3) is different from 

zero. Let us investigate the behavior of the associated variable II, (t) for si < r f ti+i* 

Let us set r (t) = $’ (t). By virtue of our assumption 

r (si) d 0 (4.5) 

Moreover, by virtue of (4.4) we have 

r’ (t) = 2ar (t) + 2j3a’ (f) a-2 (t) 

This and (4.5). together with the fact that a* (t) < 0 for Si< t < ++r , we infer that 

‘II, (t) decreases monotonically in the interval [si, ti+t]. However, this contradicts the 

&bove assumption whereby b. (t) = b for ti+j < t < si+j, j = 0, 1. Thus, for p > 0, 
a > 0 the problem of finding the optimal tracking law reduces to the problem of find- 
ing the minimum of a scalar function of a single,variable tr. To this end we must find 

‘a (t) for Y (t) = b, (t)am2 and substitute the resulting function a(t) into the functional 
J, which thereby becomes a scalar function of the variable t,. Specifically. it is easy 
to show that for the values f3 = 0, fil = 1, u = 1 we have 

D(T)= e2'39D,-1+ e-2aQ-,-l&(e~T _ em(T-To))]-~, a>0 

D (T) = eaT [D,-’ + cash (2~9-1 (eaaTO - i)]-1, a<0 

For a = 0 , the value of D (T) which does ,not depend on the tracking law is given by 

D (T) = [D,-’ + b-‘,T,]-‘, a=0 

Example 4.2. In addition to the case of continuous tracking analyzed above, it 

ia also possible to make observations at discrete instants. The latter entails optimal 

selection of the instants of measurement. Turning once again to Eq. (4. l), let us suppose 
that at discrete instants t,, . . . . t, in the interval [0, T] we observe the quantity 

5 (t - h) + 5 (09 h&O (43) 

where b (t) is a white noise of constant intensity b > 0. 

We are required to choose the numbers ti in such a way as to minimize the condi- 
tional dispersion Dx (T) . On the basis of (2.23) we readily infer that Dx (T) in this 
case is equal to 

[ 

-1 

e2aT DO1 
+e-20hb-l ' 2ati 

=I 

e (4.7) 
i=l 

This implies that for a > 0 we must set all tj = T, and that for a < 0 the numbers 
ti = 0, i - I. . . . . r. 

Examples 4.1 and 4.2 indicate that with a noise of constant intensity the presence 
of a lag in the tracking channel can increase the conditional dispersion for a > 0, i. e. 
it can result in a deterioration of data on the position of the unknown object relative 
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to the case IL = 9. On the other hand, if a < 9 , the presence of lag can have the reverse 
effect of decreasing the conditional dispersion. 

Note. In stating the above tracking problem we assumed that the a priori distribution 

of the solution z (t) of Eq. (1.1) is known for t = 0, and that data obtained during 
tracking in the interval [i), T1 can be used to determine the prehistory of x (t) for 

- 11 <t < 0 (by virtue of (1.2)). The assumption is justified if the motion of the 

unknown object is defined by Eq. (1.1) for all t. If we also know that the motion of this 
object is described by Eq. (1.1) beginning at t = 0 only, then we must alter the state- 
ment of the tracking problem as follows: The a priori distribution of the function 5 (t) 
is given for t = 0 as before, but tracking is conducted at times t > 12. Since Eq.(l.l) 

is determinate, this problem is readily reducible to that considered above simply by tak- 
ing to = h as the initial point and computing the-a priori distribution of 2 (h) with 

the aid of (1.1). Here the tracking time decreases by the amount 11 in comparison with 

the case h = 0 , however. Moreover, there is no gain in data due to knowledge of the 

prehistory of the process x (t), which accounts for the decrease in dispersion for a < 0 
in Examples 4.1 and 4.2. It is not difficult to show that if in Example 4.2 quantity 
(4.6) is observed at discrete instants ti, h < ti ,( T, then for a > 0 we must set all 

ti = T, and for a < 0 all fi = h. In other words, by virtue of (4.7) the conditional 
dispersion increases for n > 0; for a < 0 it remains the same as in the case h = 0. 

The author is grateful to F. L,Chernous’ko for his valuable comments on the above 

results. 
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